High Speed Analog-to-Digital Converter
Product Selection Guide!

Communications Infrastructure
 Digital Pre-Distortion (DPD) Loops
 Direct Conversion Receivers
 Diversity (MIMO) Receivers

Instrumentation
 Digital Oscilloscopes
 Spectrum Analyzers
 Hi-Definition Video Digitizing

Sensing & Control
 Ultrasound
 Magnetic Resonance Imaging (MRI)
 Radar & Security Sensors
 Radio Astronomy & Atmospheric LIDAR

Analog-to-Digital Converter Solutions
We offer Analog-to-Digital Converters (ADCs) that combine high speed and high SNR performance with lowest power dissipation. These ADCs provide uniquely configurable functionality including: crosspoint switches, clock dividers and programmable sampling rates / resolution / number of channels.
Introduction

Standard Analog-to-Digital Converter Products

Hittite offers a wide range of High Speed ADCs for Communication, Instrumentation, Industrial, Medical & Military applications. Low power consumption & high performance is combined with a high degree of flexibility.

- Sampling Rates: 3 to 1000 MSPS
- Resolution: 8 to 14 bits
- CMOS & LVDS Outputs
- Configurable Power Consumption & Functionality with SPI Settings
- Integrated Instrumentation Functionality

Analog Made Easy™

With our Analog Made Easy™ philosophy, we are committed to user friendly products. We have built multiple features & functionality into our ADCs that make our products easy to use, thus reducing overall cost for the system designer.

- EasySuite™: Evaluation and Prototyping Platform Environment
- EasyBoard™: Supplied Evaluation Board Connected to Xilinx® Standard FMC Board
- EasyStack™: Firmware Code Stack, Currently Available for Xilinx®

Custom Analog-to-Digital Converter Solutions

Hittite offers ADCs with customer specified integrated functions.

- Integrated LNA, VGAs and Analog Multiplexers (Analog Front End)
- Digital DownConverters (DDC)
- LVDS and JESD204 Outputs
- MCMs integrating RF and Microwave Functions with ADCs
- Ultra High Speed GSPS ADCs, page 10
High Speed, Low Power Analog-to-Digital Converters

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Function / Mode</th>
<th>Resolution (bits)</th>
<th>Sample Rate</th>
<th># of Channels</th>
<th>Power Dissipation [2][3]</th>
<th>SNR (dBFS)</th>
<th>SFDR (dBc)</th>
<th>Package</th>
<th>ECCN Code</th>
<th>EasySuite™ Evaluation Kit P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMCAD1520</td>
<td>Single Channel</td>
<td>12</td>
<td>640 MSPS</td>
<td>1</td>
<td>490 mW</td>
<td>70</td>
<td>60 / 75 [f]</td>
<td>LP7DE</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1520</td>
</tr>
<tr>
<td>HMCAD1520</td>
<td>Dual Channel</td>
<td>12</td>
<td>320 MSPS</td>
<td>2</td>
<td>490 mW</td>
<td>70</td>
<td>60 / 78 [f]</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1520</td>
<td></td>
</tr>
<tr>
<td>HMCAD1520</td>
<td>Quad Channel</td>
<td>12</td>
<td>160 MSPS</td>
<td>4</td>
<td>490 mW</td>
<td>70</td>
<td>60 / 78 [f]</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1520</td>
<td></td>
</tr>
<tr>
<td>HMCAD1520</td>
<td>Quad Channel</td>
<td>14</td>
<td>105 MSPS</td>
<td>4</td>
<td>603 mW</td>
<td>74</td>
<td>83</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1520</td>
<td></td>
</tr>
<tr>
<td>HMCAD1520</td>
<td>Quad Channel</td>
<td>14</td>
<td>80 MSPS</td>
<td>4</td>
<td>530 mW</td>
<td>75</td>
<td>85</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1520</td>
<td></td>
</tr>
<tr>
<td>HMCAD1511</td>
<td>Single Channel</td>
<td>8</td>
<td>1 GSPS</td>
<td>1</td>
<td>710 mW</td>
<td>49.8</td>
<td>[49 / 64 [f]</td>
<td>LP7DE</td>
<td>3A001.a.5.a.1</td>
<td>EKIT01-HMCAD1511</td>
</tr>
<tr>
<td>HMCAD1511</td>
<td>Dual Channel</td>
<td>8</td>
<td>500 MSPS</td>
<td>2</td>
<td>710 mW</td>
<td>49.8</td>
<td>[44 / 63 [f]</td>
<td>3A001.a.5.a.1</td>
<td>EKIT01-HMCAD1511</td>
<td></td>
</tr>
<tr>
<td>HMCAD1511</td>
<td>Quad Channel</td>
<td>8</td>
<td>250 MSPS</td>
<td>4</td>
<td>710 mW</td>
<td>49.8</td>
<td>[57 / 70 [f]</td>
<td>3A001.a.5.a.1</td>
<td>EKIT01-HMCAD1511</td>
<td></td>
</tr>
<tr>
<td>HMCAD1510</td>
<td>Single Channel</td>
<td>8</td>
<td>500 MSPS</td>
<td>1</td>
<td>295 mW</td>
<td>49.8</td>
<td>65</td>
<td>LP7DE</td>
<td>3A991.c.1</td>
<td>EKIT01-HMCAD1510</td>
</tr>
<tr>
<td>HMCAD1510</td>
<td>Dual Channel</td>
<td>8</td>
<td>250 MSPS</td>
<td>2</td>
<td>295 mW</td>
<td>49.8</td>
<td>59</td>
<td>3A991.c.1</td>
<td>EKIT01-HMCAD1510</td>
<td></td>
</tr>
<tr>
<td>HMCAD1510</td>
<td>Quad Channel</td>
<td>8</td>
<td>125 MSPS</td>
<td>4</td>
<td>295 mW</td>
<td>49.7</td>
<td>60 / 69 [f]</td>
<td>3A991.c.1</td>
<td>EKIT01-HMCAD1510</td>
<td></td>
</tr>
<tr>
<td>HMCAD1102</td>
<td>Octal Channel</td>
<td>13 / 12</td>
<td>80 MSPS</td>
<td>8</td>
<td>59 mW / Channel</td>
<td>70.1</td>
<td>77</td>
<td>LP9E</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1102</td>
</tr>
<tr>
<td>HMCAD1101</td>
<td>Octal Channel</td>
<td>13 / 12</td>
<td>65 MSPS</td>
<td>8</td>
<td>51 mW / Channel</td>
<td>72.2</td>
<td>82</td>
<td>LP9E</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1101</td>
</tr>
<tr>
<td>HMCAD1100</td>
<td>Octal Channel</td>
<td>13 / 12</td>
<td>50 MSPS</td>
<td>8</td>
<td>41 mW / Channel</td>
<td>72.2</td>
<td>82</td>
<td>LP9E</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1100</td>
</tr>
<tr>
<td>HMCAD1100</td>
<td>Octal Channel</td>
<td>13 / 12</td>
<td>40 MSPS</td>
<td>8</td>
<td>35 mW / Channel</td>
<td>72.2</td>
<td>82</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1100</td>
<td></td>
</tr>
<tr>
<td>HMCAD1100</td>
<td>Octal Channel</td>
<td>13 / 12</td>
<td>20 MSPS</td>
<td>8</td>
<td>23 mW / Channel</td>
<td>72.2</td>
<td>82</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1100</td>
<td></td>
</tr>
<tr>
<td>HMCAD1050-80</td>
<td>Dual Channel</td>
<td>13 / 12</td>
<td>80 MSPS</td>
<td>2</td>
<td>102 mW</td>
<td>72</td>
<td>77</td>
<td>LP9AE</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1050-80</td>
</tr>
<tr>
<td>HMCAD1050-80</td>
<td>Dual Channel</td>
<td>13 / 12</td>
<td>65 MSPS</td>
<td>2</td>
<td>85 mW</td>
<td>72.6</td>
<td>81</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1050-80</td>
<td></td>
</tr>
<tr>
<td>HMCAD1050-40</td>
<td>Dual Channel</td>
<td>13 / 12</td>
<td>40 MSPS</td>
<td>2</td>
<td>55 mW</td>
<td>72.7</td>
<td>81</td>
<td>LP9AE</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1050-40</td>
</tr>
<tr>
<td>HMCAD1050-40</td>
<td>Dual Channel</td>
<td>13 / 12</td>
<td>20 MSPS</td>
<td>2</td>
<td>30 mW</td>
<td>72.2</td>
<td>85</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1050-40</td>
<td></td>
</tr>
<tr>
<td>HMCAD1051-80</td>
<td>Single Channel</td>
<td>13 / 12</td>
<td>80 MSPS</td>
<td>1</td>
<td>60 mW</td>
<td>72</td>
<td>77</td>
<td>LP6HE</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1051-80</td>
</tr>
<tr>
<td>HMCAD1051-80</td>
<td>Single Channel</td>
<td>13 / 12</td>
<td>65 MSPS</td>
<td>1</td>
<td>50 mW</td>
<td>72.6</td>
<td>81</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1051-80</td>
<td></td>
</tr>
<tr>
<td>HMCAD1051-40</td>
<td>Single Channel</td>
<td>13 / 12</td>
<td>40 MSPS</td>
<td>1</td>
<td>33 mW</td>
<td>72.7</td>
<td>81</td>
<td>LP6HE</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1051-40</td>
</tr>
<tr>
<td>HMCAD1051-40</td>
<td>Single Channel</td>
<td>13 / 12</td>
<td>20 MSPS</td>
<td>1</td>
<td>19 mW</td>
<td>72.2</td>
<td>85</td>
<td>3A001.a.5.a.4</td>
<td>EKIT01-HMCAD1051-40</td>
<td></td>
</tr>
<tr>
<td>HMCAD1040-80</td>
<td>Dual Channel</td>
<td>10</td>
<td>80 MSPS</td>
<td>2</td>
<td>78 mW</td>
<td>61.6</td>
<td>75</td>
<td>LP9AE</td>
<td>EAR99</td>
<td>EKIT01-HMCAD1040-80</td>
</tr>
<tr>
<td>HMCAD1040-80</td>
<td>Dual Channel</td>
<td>10</td>
<td>65 MSPS</td>
<td>2</td>
<td>65 mW</td>
<td>61.6</td>
<td>77</td>
<td>EAR99</td>
<td>EKIT01-HMCAD1040-80</td>
<td></td>
</tr>
<tr>
<td>HMCAD1040-40</td>
<td>Dual Channel</td>
<td>10</td>
<td>40 MSPS</td>
<td>2</td>
<td>43 mW</td>
<td>61.6</td>
<td>81</td>
<td>LP9AE</td>
<td>EAR99</td>
<td>EKIT01-HMCAD1040-40</td>
</tr>
<tr>
<td>HMCAD1041-80</td>
<td>Single Channel</td>
<td>10</td>
<td>80 MSPS</td>
<td>1</td>
<td>46 mW</td>
<td>61.6</td>
<td>76</td>
<td>LP6HE</td>
<td>EAR99</td>
<td>EKIT01-HMCAD1041-80</td>
</tr>
<tr>
<td>HMCAD1041-80</td>
<td>Single Channel</td>
<td>10</td>
<td>65 MSPS</td>
<td>1</td>
<td>38 mW</td>
<td>61.6</td>
<td>77</td>
<td>EAR99</td>
<td>EKIT01-HMCAD1041-80</td>
<td></td>
</tr>
<tr>
<td>HMCAD1041-40</td>
<td>Single Channel</td>
<td>10</td>
<td>40 MSPS</td>
<td>1</td>
<td>25 mW</td>
<td>61.6</td>
<td>81</td>
<td>LP6HE</td>
<td>EAR99</td>
<td>EKIT01-HMCAD1041-40</td>
</tr>
<tr>
<td>HMCAD1041-40</td>
<td>Single Channel</td>
<td>10</td>
<td>20 MSPS</td>
<td>1</td>
<td>15 mW</td>
<td>61.6</td>
<td>81</td>
<td>EAR99</td>
<td>EKIT01-HMCAD1041-40</td>
<td></td>
</tr>
</tbody>
</table>

Hittite has consolidated the original Arctic Silicon Devices (ASD) part number options by their sampling rates into 14 Hittite part numbers. No ASD parts were discontinued. Contact: adc@hittite.com
Digital Pre-Distortion (DPD) Receiver Subsystem Featuring the HMCAD1520

[1] You may choose from a variety of HMC PLL+VCO combinations specific to your application

[2] You may choose from a variety of MMIC Mixers specific to your application
A/D Converter Applications

Communications Infrastructure

Direct Conversion Receiver with Diversity Featuring the HMCAD1520

HMC860LP3E
- High PSRR DC Regulator
 - 3.35 V - 5.6 V

HMC871LP4E
- Dual Channel LNA
 - 55 - 1200 MHz
 - 0.5 dB Noise Figure

HMC818LP3E
- Dual Channel LNA
 - 1700 - 2200 MHz
 - 0.5 dB Noise Figure

HMC820LP6GE
- Tri-band PLL + VCO
 - Low Phase Noise,
 - -110 dBc/Hz @ 10 kHz

HMC830LP6GE
- Wideband PLL + VCO
 - 180 fs RMS jitter
 - Low Phase Noise,
 - -110 dBc/Hz @ 10 kHz

HMC617LP3E
- LNA, 55 - 1200 MHz
 - 0.5 dB Noise Figure
 - 24 dB Gain

HMC618LP3E
- LNA, 1700 - 2200 MHz
 - 0.75 dB Noise Figure
 - 16 dB Gain

HMC817LP3E
- Dual Channel LNA
 - 55 - 1200 MHz
 - 0.5 dB Noise Figure

HMC900LP5E
- Dual Baseband LPF
 - 3.5 to 50 MHz
 - 3 dB BW Programmable
 - 12 dB Noise Figure
 - +30 dBm OIP3

HMC900LP5E
- Dual Baseband LPF
 - 3.5 to 50 MHz
 - 3 dB BW Programmable
 - 12 dB Noise Figure
 - +30 dBm OIP3

HMC900LP5E
- Dual Baseband LPF
 - 3.5 to 50 MHz
 - 3 dB BW Programmable
 - 12 dB Noise Figure
 - +30 dBm OIP3

HMC900LP5E
- Dual Baseband LPF
 - 3.5 to 50 MHz
 - 3 dB BW Programmable
 - 12 dB Noise Figure
 - +30 dBm OIP3

[1] You may choose from a variety of HMC LNAs specific to your application

[2] You may choose from a variety of HMC PLL+VCO combinations specific to your application

Analog-to-Digital Converter Solutions: adc@hittite.com
Visit us at www.hittite.com

JUNE 2011
Heterodyne Receiver with MIMO Featuring the HMCAD1520

HMC617LP3E [1]
- LNA, 55 - 1200 MHz
- 0.5 dB Noise Figure
- 24 dB Gain

HMC618LP3E [1]
- LNA, 1700 - 2200 MHz
- 0.75 dB Noise Figure
- 16 dB Gain

HMC624LP4E
- 6-Bit DATT
- DC - 6.0 GHz
- +55 dBm High IIP3

HMC589ST89E
- HBT Gain Block
- DC - 4 GHz
- +33 dBm OIP3

HMC890LP5E
- Band Pass Filter
- 200 ns Tuning Response

HMC891LP5E
- Band Pass Filter
- 200 ns Tuning Response

HMC890LP5E
- Band Pass Filter
- 200 ns Tuning Response

HMC891LP5E
- Band Pass Filter
- 200 ns Tuning Response

HMC820LP6CE
- Dual Downconverters
- 1700 - 2200 MHz

HMC860LP4E
- 5-Bit DVG with Diff. Outputs
- 30 - 400 MHz
- -4 to +19 dB Gain
- +40 dBm OIP3

HMC820LP6CE
- Tri-band PLL + VCO
- Low Phase Noise, -110 dBc/Hz @ 10 kHz

HMC860LP4E
- Tri-band PLL + VCO
- Low Phase Noise, -110 dBc/Hz @ 10 kHz

HMC830LP6GE [2]
- Wideband PLL + VCO
- 180 fs RMS Jitter
- Low Phase Noise, -110 dBc/Hz @ 10 kHz

HMC617LP3E [1]
- Dual Channel LNA
- 55 - 1200 MHz
- 0.5 dB Noise Figure

HMC817LP3E [1]
- Dual Channel LNA
- 1700 - 2200 MHz
- 0.5 dB Noise Figure

HMC624LP4E
- 6-Bit DATT
- DC - 8.0 GHz
- +55 dBm High IIP3

HMC860LP4E
- 5-Bit DVG with Diff. Outputs
- 30 - 400 MHz
- -4 to +19 dB Gain
- +40 dBm OIP3

HMC820LP6CE
- Dual Downconverters
- 700 - 1000 MHz

HMC860LP4E
- Dual Downconverters
- 700 - 1000 MHz

HMC624LP4E
- Dual Downconverters
- 1700 - 2200 MHz

HMC680LP4E
- Dual Downconverters
- 700 - 1000 MHz

HMC820LP6CE
- Analog-to-Digital Converter
- 14-Bit ADC
- 105 MSPS
- 4 Channels

[1] You may choose from a variety of HMC LNAs specific to your application
[2] You may choose from a variety of HMC PLL+VCO combinations specific to your application
Digital Oscilloscopes Featuring the HMCAD1510 & HMCAD1511

HMC860LP3E
- High PSRR DC Regulator
 - 3.35 V - 5.6 V

HMC830LP6GE
- Wideband PLL + VCO
 - 180 fs RMS Jitter
 - Low Phase Noise, -110 dBc/Hz @ 10 kHz

HMCAD1510
- 8-Bit A-to-D Converter
 - 125/250/500 MSPS
 - Quad/Dual/Single Ch.

HMCAD1511
- 8-Bit A-to-D Converter
 - 250/500/1000 MSPS
 - Quad/Dual/Single Ch.

Digital Oscilloscopes Featuring the HMCAD1510 & HMCAD1511

SNR with Digital Gain Compared with Traditional Ideal 8-Bit Converter

Part Number	**Function / Mode**	**Resolution (bits)**	**Sample Rate**	**# of Channels**	**Power Dissipation [3][4]**	**SNR (dBFS)**	**SFDR (dBc)**
HMCAD1511	Single Channel	8	1 GSPS	1	710 mW	49.8	49 / 65 [R]
Dual Channel	8	500 MSPS	2	710 mW	49.8	57 / 60 [R]	
Quad Channel	8	250 MSPS	4	710 mW	49.8	57 / 67 [R]	
HMCAD1510	Single Channel	8	500 MSPS	1	295 mW	49.8	49 / 65 [R]
Dual Channel	8	250 MSPS	2	295 mW	49.8	59 / 69 [R]	
Quad Channel	8	125 MSPS	4	295 mW	49.7	60 / 69 [R]	

[R] Excluding Interleaving Spurs.

[3] Supply Voltage (Vdd): +1.8 Vdc Analog Supply (AVdd) and +1.8 Vdc Digital Supply (DVdd)

[4] Output Supply Voltage (OVdd): +1.7 to +3.6 Vdc

You may choose from a variety of HMC PLL+VCO combinations specific to your application

Analog-to-Digital Converter Solutions: adc@hittite.com

Visit us at www.hittite.com JUNE 2011
Spectrum Analyzers Featuring the HMCAD1520 In Precision Mode

HMC860LP3E
High PSRR DC Regulator
• 3.35 V - 5.6 V

HMC830LP6GE [1]
Wideband PLL + VCO
• 180 fs RMS Jitter
• Low Phase Noise,
-110 dBc/Hz @ 10 kHz

HMC880LP4E
5-Bit DVGA
• 30 - 400 MHz
• -4 to +19 dB Gain
• +40 dBm OIP3

HMC680LP4E
5-Bit DVGA with Differential Outputs
• 30 - 400 MHz
• -4 to +19 dB Gain
• +40 dBm OIP3

HMCAD1520
Quad Channel Precision Mode
14-Bit A-to-D Converter
• 80 / 105 MSPS
• Integrated Cross Point Switch (Analog Mux)

[1] You may choose from a variety of HMC PLL+VCO combinations specific to your application
Medical & Industrial Imaging (Ultrasound) Featuring the HMCAD1100/1101/1102

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Function / Mode</th>
<th>Resolution (bits)</th>
<th>Sample Rate</th>
<th># of Channels</th>
<th>Power Dissipation [2][3]</th>
<th>SNR (dBFS)</th>
<th>SFDR (dBc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMCAD1102</td>
<td>Octal Channel 13 / 12</td>
<td>80 MSPS</td>
<td>8</td>
<td>50 mW / Channel</td>
<td>70.1</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>HMCAD1101</td>
<td>Octal Channel 13 / 12</td>
<td>65 MSPS</td>
<td>8</td>
<td>51 mW / Channel</td>
<td>72.2</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>HMCAD1100</td>
<td>Octal Channel 13 / 12</td>
<td>50 MSPS</td>
<td>8</td>
<td>41 mW / Channel</td>
<td>72.2</td>
<td>82</td>
<td></td>
</tr>
</tbody>
</table>

[2] Supply Voltage (Vdd): +1.8 Vdc Analog Supply (AVdd) and +1.8 Vdc Digital Supply (DVdd)
[3] Output Supply Voltage (OVdd): +1.7 to +3.6 Vdc
[1] You may choose from a variety of HMC PLL+VCO combinations specific to your application
Hittite’s Ultra High Speed GSPS A/D Converters

In addition to the standard product, 3 to 1000 MSPS ADCs, Hittite offers ultra high bandwidth, non-interleaved flash and folding/interpolating-flash ADCs. These ADCs are capable of operating at sampling rates up to 26 GSPS and leverage Hittite’s industry-leading track-and-hold design patents and advanced packaging capabilities. Operating over the full -55 °C to +85 °C temperature range, these ADCs are fully capable of supporting sub-sampling applications into Ku-band, and are ideal for wideband receiver systems and test instrumentation applications. Hittite can develop advanced flash and folding/interpolating-flash architecture ADCs to meet your custom specifications.

Atmospheric LIDAR Featuring the HMC5448 8-Bit, 5 GSPS A/D Converter

Please Contact: adc@hittite.com for Information on the HMC5448 Ultra High Speed ADC

[1] You may choose from a variety of HMC PLL+VCO combinations specific to your application
Radio Astronomy Featuring The HMC5831 3-Bit, 26 GS/s A/D Converter

HMC5831
- 3-Bit, 26 GS/s ADC
- 10 GHz Full Bandwidth
- 20 GHz / 10 GS/s Clock / Data Rate
- 256 mVp-p Single-Ended RF Input Level

HMC577LP3E
- SPDT Switch
- DC - 20 GHz
- > 45 dBm Isolation

HMC572LP3E
- Analog VGA
 - 0.5 - 6.0 GHz
 - -35 to +15 dB Gain Control
 - +28 dBm OIP3

ADC
- Clock ÷ 8

PLL
- x 2
- 2:1 Selector
- 4 GHz
- 20 GHz
- 10 GSPS

REF +5V
- +3V
- +5V

FPGA
- 10 GSPS
- 10 GSPS

TFF Q
- 2 GHz
- Clock x 8

HMC749LC3C
- 26 GHz T Flip-Flop
 - 18 / 17 ps Rise / Fall Time
 - 2 ps Deterministic Jitter
 - 0.6 to 1.2 Vp-p Differential Output Voltage Swing

HMC859LC3
- Clock Divide-by-8
 - Up to 26 GHz Clock Rate
 - 19 / 17 ps Fast Rise / Fall Times
 - 146 ps Propagation Delay

HMC749LC3
- Fractional-N PLL + Sweeper
 - DC to 8 GHz
 - Low Phase Noise: -112 dBc
 - -23 dBm Output

HMC837LP6E
- PLL + VCO
 - 1.025 - 4.6 GHz
 - Low Phase Noise, < -111 dBc/Hz @ 10 kHz

HMC859LC3B
- 14 Gbps 2:1 Diff. Selector
 - 19 / 20 ps Rise / Fall Time
 - Propagation Delay: 87 ps
 - 0.5 to 1.3 Vp-p Differential Output Voltage Swing

HMC780LP3E
- High PSRR DC Regulator
 - 3.35 V - 5.6 V

HMC860LP3E
- Wideband Driver
 - DC - 20 GHz
 - 15 dB Gain
 - +24 dBm Saturated Output Power

HMC941
- 5-Bit DATT Chip
 - 1 - 30 GHz
 - 15.5 dB Step Attenu. (0.5 dB)

HMC580LP5E
- VCO with Fo/2 & Fo/4 Output
 - 9.5 - 10.8 GHz Fo
 - Low Phase Noise, < -110 dBc/Hz @ 10 kHz
 - < 11 dBm Pout

HMC703LP4E
- Fractional-N PLL + Sweeper
 - DC to 8 GHz
 - Low Phase Noise: -112 dBc
 - -23 dBm Output

Please Contact: adc@hittite.com for Information on the HMC5831 Ultra High Speed ADC